【溶融亜鉛めっきに関するデンロ技報 一覧表】

※ 掲載資料をご希望の場合は、弊社へお問い合わせ下さい。

<2024年7月現在>

		T	1
No.	タイトル	キーワード	発行年月
20	溶融亜鉛めっきについて		1995年1月
21	りん酸塩処理について	低光沢処理・環境調和	1995年7月
27	溶融亜鉛めっき用高力ボルト摩擦接合面処理「OMZP-2」処理について	摩擦接合・すべり試験	1998年7月
30	低明度処理法の開発	りん酸塩処理・色明度・白さび	2000年1月
34	溶融亜鉛めっき材の溶接について	めっき後溶接・溶接材料	2002年1月
35	T継手を有する溶接鋼板の溶融亜鉛浸漬中における熱ひずみと温度変化	熱伝導解析・熱応力解析・有限要素法・温度分布	2002年7月
35	溶融亜鉛めっき高力ボルト接合の設計・施工	高力ボルト・接合部・摩擦面処理	2002年7月
38	新しい摩擦面処理剤の基礎研究	めっき高力ボルト・摩擦面接合・りん酸亜鉛処理	2004年1月
39	溶接鋼平板の急激な温度変化による熱伝導解析と熱応力分布	熱ひずみ・温度伝導率・熱応力分布	2004年7月
39	金属溶射	溶射・防食	2004年7月
40	亜鉛浴中へのニッケル(Ni)添加の効果	ニッケル(Ni)	2005年1月
40	溶融亜鉛めっきの特徴を生かした鋼構造物の設計・構造	鋼構造物・設計	2005年1月
41	めっき浴分析方法の紹介	浴分析・原子吸光分析	2005年7月
42	溶融亜鉛めっきによる歪の対策方法について	歪み・温度差・熱応力	2006年1月
43	溶融亜鉛めっき鉄筋について	めっき鉄筋・コンクリート・塩分濃度・付着強度	2006年7月
44	溶融亜鉛浸漬中の鋼平板に発生する温度変化と熱応力分布	温度分布・熱伝導解析・熱拡散率・熱応力解析	2007年1月
45	溶融亜鉛めっき割れに関する解析	温度分布・熱伝導解析・熱拡散率・熱応力解析	2007年7月
46	鋳物への溶融亜鉛めっき処理と不めっき部の断面分析結果	鋳物・炭素	2008年1月
47	超微小硬さ試験機を用いためっき鋼材の力学的特性の研究	ナノ硬度計・座屈耐力・マルテンス硬さ	2008年7月
48	溶融亜鉛めっきの概要と適用例		2009年1月
49	最適化手法を用いた鋼構造物の溶融亜鉛めっき中の めっき割れおよび熱ひずみのメカニズム解明に関する研究(1)	温度分布・熱伝導解析・熱拡散率・熱応力解析	2009年7月
50	最適化手法を用いた鋼構造物の溶融亜鉛めっき中の めっき割れおよび熱ひずみのメカニズム解明に関する研究(2)	温度分布・熱伝導解析・熱拡散率・熱応力解析	2010年1月
51	最適化手法を用いた鋼構造物の溶融亜鉛めっき中の めっき割れおよび熱ひずみのメカニズム解明に関する研究(3)	温度分布・熱伝導解析・熱拡散率・熱応力解析	2010年7月
52	最適化手法を用いた鋼構造物の溶融亜鉛めっき中の めっき割れおよび熱ひずみのメカニズム解明に関する研究(4)	温度分布・熱伝導解析・熱拡散率・熱応力解析	2011年1月
53	最適化手法を用いた鋼構造物の溶融亜鉛めっき中の めっき割れおよび熱ひずみのメカニズム解明に関する研究(5)	温度分布・熱伝導解析・熱拡散率・熱応力解析	2011年7月
53	鋼構造物の防錆防食方法	防錆・防食・塗装・溶射	2011年7月
54	最適化手法を用いた鋼構造物の溶融亜鉛めっき中の めっき割れおよび熱ひずみのメカニズム解明に関する研究(6)	温度分布・熱伝導解析・熱拡散率・熱応力解析	2012年1月
54	めっき面への塗装と塗膜の劣化診断方法	塗装・塗膜剥離・塗膜の劣化診断・付着性	2012年1月
55	鋼構造物のめっき時のひずみメカニズムとその抑止	温度分布・熱伝導解析・弾塑性熱応力解析	2012年7月
57	グリーン系干渉色の溶融亜鉛めっきの開発	表面処理・着色処理・干渉色	2013年7月
58	鋼材と溶融亜鉛界面における化合物層の成長挙動に関する研究	皮膜組織・金属間化合物	2014年1月
58	摩擦接合面処理剤「ECO-DC」の紹介	摩擦接合面処理剤・摩擦接合・すべり耐力試験	2014年1月
59	H形鋼を用いた部材における溶融亜鉛めっき割れ対策に関する検討	H形鋼・めっき割れ・熱伝導ー弾塑性熱応力解析	2014年7月
59	溶融亜鉛めっき鉄筋の紹介	めっき鉄筋・コンクリート・付着強度・建築材料	2014年7月
60	新合金めっき鉄筋の開発	鉄筋・亜鉛-アルミ合金めっき・付着性・耐食性	2015年1月
63	柱梁接合部の溶融亜鉛めっき割れに関する検討	めっき割れ・熱伝導ー弾塑性熱応力解析	2016年7月
63	溶融亜鉛めっきに適用される白さび防止剤の性能比較試験	白さび防止剤・6価クロムフリー・レイティングナンバ法	2016年7月
64	めっき抜き孔径および位置の違いによる鋼構造物の 溶融亜鉛めっき割れ対策に関する実験的検討	めっき割れ・めっき抜き孔・孔径・孔位置	2017年1月
64	溶融亜鉛めっき鋼材の水素脆性割れについて	水素脆性割れ・酸洗・冷間加工・拡散性水素	2017年1月
-	めっき抜き孔を有する鋼構造物の	めっき割れ・めっき抜き孔・孔径・孔位置	2017年7月

66	めっき抜き孔を有する鋼構造物の 溶融亜鉛めっき割れ対策に関する解析的検討(その2)	めっき割れ・めっき抜き孔・孔径・孔位置	2018年1月
66	コールドスプレー法による亜鉛皮膜形成技術と屋外暴露試験結果	コールドスプレー・亜鉛皮膜・組織・封孔処理	2018年1月
67	過剰応力下低合金鋼での 亜鉛ぜい化割れに及ぼす熱影響部組織と引張応力の影響	溶融亜鉛・割れ・液体金属ぜい化	2018年7月
68	過剰応力下低合金鋼での 亜鉛ぜい化割れに及ぼす熱影響部組織と引張応力の影響(その	溶融亜鉛・割れ・液体金属ぜい化	2019年1月
69	りん酸塩処理を施しためっき材と通常のめっき材の耐食性比較	りん酸塩処理・複合サイクル試験	2019年7月
71	溶融亜鉛めっき鉄筋の取扱いと耐久性照査について	めっき鉄筋・耐久性照査・建築材料	2020年7月
73	溶融亜鉛めっき材の一時防錆処理剤「パーレンE5174」の紹介	クロムフリー・一時防錆処理	2021年7月
76	溶融亜鉛めっきに関するJIS規格の改正について	JIS H 8641 · JIS H 0401	2023年1月